敬告作者朋友
最近我们发现,有一些假冒本刊在线投稿系统的网站,采用与《麦类作物学报》相似的网页、网址和邮箱发送征稿通知以及收取审稿费、版面费的信息,以骗取钱财。详细情况见【通知公告】栏的“再次提醒作者朋友:谨防上当受骗!!!”

关闭
侯学会,王 猛,高 帅,隋学艳,梁守真.综合近红外-红波段-短波红外三波段光谱特征空间的小麦冠层含水量反演[J].麦类作物学报,2020,(7):866
综合近红外-红波段-短波红外三波段光谱特征空间的小麦冠层含水量反演
A New Method Monitoring Water Content in Wheat Canopy Based on Nir-Red-Swir Spectral Space from Landsat 8 OLI Data
  
DOI:10.7606/j.issn.1009-1041.2020.07.12
中文关键词:  Nir-Red-Swir光谱特征空间  三波段垂直植被水分指数  小麦冠层含水量  植被覆盖度  Landsat 8 OLI
英文关键词:Nir-Red-Swir spectral space  Three-band perpendicular vegetation water index  Wheat canopy water content  Coverage  Landsat 8 OLI
基金项目:山东省农业科学院创新工程项目(CXGC2018E12);国家重大研发计划项目(2017YFA0603004)
作者单位
侯学会,王 猛,高 帅,隋学艳,梁守真 (1.农业农村部华东都市农业重点实验室/山东省农业可持续发展研究所山东济南 2501002.中国科学院遥感与数学地球研究所 遥感科学国家重点实验室北京 100101) 
摘要点击次数: 1670
全文下载次数: 44617
中文摘要:
      为提高返青期-拔节期-开花期-灌浆期不同覆盖条件下小麦冠层含水量的遥感反演精度,综合分析基于Nir-Red和Nir-Swir光谱特征空间开展作物含水量监测的优势与局限,利用垂直干旱指数(perpendicular drought index,PDI)和短波红外垂直失水指数(shortwave infrared perpendicular water stress index,SPSI)的比值形式,构建了一种基于近红外-红波段-短波红外(Nir-Red-Swir)三波段光谱特征空间的垂直植被水分指数(three-band perpendicular vegetation water index,TPVWI)。结果表明,在不同生育时期,TPVWI与小麦冠层含水量(vegetation water content,VWC)均具有显著相关关系(P<0.01),且对植被含水量的敏感性优于PDI、作物水分监测指数(plant water index,PWI)、SPSI和NDVI 4种植被指数,且在反映小区域内小麦冠层含水量的时空趋势上有较好的表征能力。对比地面实测数据,利用TPVWI建立的作物含水量估测模型的预测精度较高,r与RMSE分别为0.763和2.296%,说明利用综合Nir-Red-Swir三波段光谱空间特征的植被水分指数在监测不同覆盖条件下的作物含水量具有一定的可行性,可丰富当前作物冠层含水量遥感监测的理论方法。
英文摘要:
      In order to inverse the wheat canopy water content (VWC) under different covering conditions using remote sensing data at different growth stages, such as returning, jointing, flowering, andgrain filling stage, a new index termed three-band perpendicular vegetation water index (TPVWI) was found to estimate vegetation water content of winter wheat using the ratio of perpendicular drought index (PDI) and short wave infrared perpendicular water stress index (SPSI), according to the advantages and limitations of Nir-Red and Nir-Swir spectral space in monitoring crop water content. Results showed that TPVWI had a significantly negative correlation (P<0.01) with VWC at all growth stages, and its relationship with VWC was better than that of PDI, plant water index (PWI), SPSI and normalized difference vegetation index (NDVI). The TPVWI also has a good quality in analysing the spatial-temporal pattern of the VWC of wheat in a small area. Verification with ground measured data, vegetation water model established based on TPVWI has higher accuracy, and r and RMSE were 0.763 and 2.296%, respectively. The results indicated that TPVWI is certainly feasible to estimate crop water content under different fraction covering conditions of wheat and it provides a new method for monitoring crop water content using remote sensing data.
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第22079060位访问者
版权所有麦类作物学报编辑部
京ICP备09084417号
技术支持: 本系统由北京勤云科技发展有限公司设计