敬告作者朋友
最近我们发现,有一些假冒本刊在线投稿系统的网站,采用与《麦类作物学报》相似的网页、网址和邮箱发送征稿通知以及收取审稿费、版面费的信息,以骗取钱财。详细情况见【通知公告】栏的“再次提醒作者朋友:谨防上当受骗!!!”

关闭
杨冠硕,朱少龙,杨天乐,韩东伟,张伟军,王建亮,姚照胜,刘 涛,孙成明.融合光谱和点云信息的小麦地上部生物量估测[J].麦类作物学报,2025,(11):1575
融合光谱和点云信息的小麦地上部生物量估测
Estimation of Wheat Aboveground Biomass by Fusion of Spectral and Point Cloud Information
  
DOI:
中文关键词:  小麦  地上部生物量  机器学习  光谱指数  点云特征参数
英文关键词:Aboveground biomass  Machine learning  Spectral indices  Point cloud feature parameters  Wheat
基金项目:江苏省重点研发计划(现代农业)项目(BE2022338)
作者单位
杨冠硕,朱少龙,杨天乐,韩东伟,张伟军,王建亮,姚照胜,刘 涛,孙成明 (1.江苏省作物遗传生理国家级重点实验室培育点扬州大学江苏扬州 225009 2.江苏省粮食作物现代产业技术协同创新中心扬州大学江苏扬州 225009 3.扬州大学智慧农业研究院江苏扬州 225009) 
摘要点击次数: 39
全文下载次数: 29
中文摘要:
      小麦地上部生物量(AGB)是衡量其生长状况的重要指标,采用无人机搭载不同光学传感器可实现小麦AGB的监测。由于小麦生长后期植被覆盖度较高,光学传感器难以获取冠层内部的信息,从而影响AGB的监测精度。为了减少这种影响,本研究在利用光谱指数(颜色指数CIs和植被指数VIs)估算AGB时,引入了与高度相关的点云特征参数(PCs)作为冠层结构的代表性指标,并对引入PCs前后的AGB估算模型精度进行了比较分析。结果表明,在小麦拔节期、抽穗期和灌浆期,使用不同特征参数估算AGB的效果存在差异。CIs在训练集中的估算效果略低于VIs,而在验证集中则略高于VIs;尽管PCs在三个关键时期的表现并不最为突出,但其稳定性较强,部分冠层结构特征显示出对AGB的预测潜力。使用单一特征预测AGB时,r2范围为0.47~0.75,而融合CIs、VIs与PCs三种特征后的AGB估算模型精度得到了显著提高。在三个生育时期,模型的预测r2分别为0.79、0.81和0.77,RMSE分别为0.42、0.74和0.80 t·hm-2。在采用不同类型的遥感特征时,支持向量机回归(SVM)比高斯过程回归(GPR)表现出更优的估算效果。因此,通过融合CIs、VIs和PCs三种特征,并采用SVM算法,可以有效实现小麦AGB的估算。
英文摘要:
      Wheat above ground biomass(AGB) serves as a crucial indicator for assessing its growth status. Currently, unmanned aerial vehicles(UAVs) equipped with various optical sensors have been extensively utilized for monitoring wheat AGB. However, in the late stages of wheat growth, high vegetation coverage hinders optical sensors from capturing information within the canopy, thereby diminishing the accuracy of AGB monitoring. To mitigate this issue, this study incorporated point cloud characteristic parameters(PCs), which are related to canopy height, as representative indicators of canopy structure for estimating AGB using spectral indices, including color indices(CIs) and vegetation indices(VIs). The accuracy of AGB estimation models was then compared before and after the inclusion of PCs. The results revealed variations in the effectiveness of AGB estimation using different characteristic parameters during the jointing, heading, and filling stages of wheat growth. In the training set, the effect of CIs was slightly lower than that of VIs, while in the validation set, it was marginally higher. Although PCs did not exhibit the most remarkable performance across the three key periods, their stability was notably strong, and certain canopy structural characteristics demonstrated potential for AGB prediction. When individual features were used for AGB prediction, the r2 values ranged from 0.47 to 0.75. In contrast, integrating the three features of CIs, VIs, and PCs substantially enhanced the accuracy of the AGB estimation model. Specifically, during the three growth stages, the models r2 values were 0.79, 0.81, and 0.77, and the root mean square error(RMSE) was 0.42, 0.74, and 0.80 t·hm-2, respectively. Among different types of remote sensing features, support vector machine regression(SVM) provided superior estimation results compared to Gaussian process regression(GPR). Therefore, by integrating the three features(CIs, VIs, and PCs) and employing the SVM algorithm, an effective estimation of wheat AGB can be achi.
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第27186202位访问者
版权所有麦类作物学报编辑部
京ICP备09084417号
技术支持: 本系统由北京勤云科技发展有限公司设计