敬告作者朋友
最近我们发现,有一些假冒本刊在线投稿系统的网站,采用与《麦类作物学报》相似的网页、网址和邮箱发送征稿通知以及收取审稿费、版面费的信息,以骗取钱财。详细情况见【通知公告】栏的“再次提醒作者朋友:谨防上当受骗!!!”

关闭
朱志畅,葛 焱,臧晶荣,李 庆,金时超,徐焕良,翟肇裕.基于无人机图像和SHAP特征筛选的小麦田间产量预测方法研究[J].麦类作物学报,2025,(2):264
基于无人机图像和SHAP特征筛选的小麦田间产量预测方法研究
Research on Wheat Yield Prediction Based on UAV Imagery and SHAP Feature Selection
  
DOI:
中文关键词:  小麦  无人机图像  机器学习  SHAP加性解释方法  产量预测
英文关键词:Wheat  UAV imagery  Machine learning  Shapley additive explanations  Yield prediction
基金项目:江苏省自然科学基金项目(BK20231004);中央高校基本科研业务费专项(KYCXJC2023007)
作者单位
朱志畅,葛 焱,臧晶荣,李 庆,金时超,徐焕良,翟肇裕 (1.南京农业大学人工智能学院江苏南京 210031 2.南京农业大学工学院江苏南京 2100313.南京农业大学农学院江苏南京 210095 4.南京农业大学前沿交叉研究院江苏南京 210095) 
摘要点击次数: 252
全文下载次数: 195
中文摘要:
      为了探寻适宜的小麦产量预测模型并提高其精度,从冬小麦灌浆期的无人机多光谱和RGB图像中提取了14种光谱参数和28种形态参数作为特征变量,利用线性回归、随机森林、神经网络等10种机器学习方法构建小麦田间产量预测模型,并比较了模型间预测能力的差异;同时,引入机器学习事后可解释性方法SHAP对输入的特征变量进行重要性分析和筛选,了解其提高模型预测能力的效果。结果表明:(1)10种机器学习模型中,误差逆传播神经网络BPNN的产量预测表现最好(r2=0.826,RMSE=0.094 t·hm-2);(2)根据SHAP确定的特征变量重要性排序,花青素反射指数ARI和三维冠层体积Volume对于预测结果的影响最大,占全部特征重要性总和的45.48%;(3)经过SHAP特征筛选后,确定了在BPNN产量预测模型上表现最优的9个特征变量,其预测结果r2为0.865,RMSE为0.075 t·hm-2, 比使用全特征的BPNN和事前Pearson相关性分析方法在预测精度上均有提升。因此,在优选产量预测模型基础上,可采用SHAP机制对特征变量的重要性进行筛选和分析,以此进一步提高田间小麦产量预测精度。
英文摘要:
      Accurate and effective yield prediction is essential for wheat breeding, cultivation and field management. In this study, the multispectral and RGB images of winter wheat during the grain filling stage were collected from UAV, and 14 spectral traits and 28 morphological traits were extracted as feature variables. Ten machine learning methods, including linear regression, random forest and neural network, were used to construct wheat yield prediction models, and the differences between the models were compared to select the best one. Additionally, machine learning interpretability method SHAP was introduced to analyze the importance of the feature variables, in order to improve the prediction performance of the model. The results showed that among the 10 machine learning methods used, the BPNN model had the best prediction performance (r2=0.826, RMSE=0.094 t·hm-2). According to the feature importance ranking determined by SHAP, Anthocyanin Reflectance Index (ARI) and Three-Dimensional Canopy Volume (Volume) had the greatest impact on the prediction results, accounting for 45.48% of the total feature importance. After feature selection using SHAP, the BPNN model with the best performance was determined based on nine feature variables (r2=0.865, RMSE=0.075 t·hm-2). This improved the prediction accuracy compared to the BPNN model using all features and the pre-analysis method Pearson correlation analysis. Therefore, based on the optimal yield prediction model, SHAP mechanism can be used to select and analyze the importance of feature variables, so as to further improve the accuracy of wheat yield prediction.
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第27188975位访问者
版权所有麦类作物学报编辑部
京ICP备09084417号
技术支持: 本系统由北京勤云科技发展有限公司设计