敬告作者朋友
最近我们发现,有一些假冒本刊在线投稿系统的网站,采用与《麦类作物学报》相似的网页、网址和邮箱发送征稿通知以及收取审稿费、版面费的信息,以骗取钱财。详细情况见【通知公告】栏的“再次提醒作者朋友:谨防上当受骗!!!”

关闭
姜 宇,马廷淮.基于CNN-LSTM-Attention网络的河南省冬小麦产量预测[J].麦类作物学报,2024,(10):1352
基于CNN-LSTM-Attention网络的河南省冬小麦产量预测
Prediction of Henan Winter Wheat Yield Using CNN-LSTM-Attention Network
  
DOI:
中文关键词:  冬小麦  注意力机制  卷积神经网络  长短期记忆网络  产量预测
英文关键词:Winter wheat  Attention mechanism  Convolutional neural network (CNN)  Long short-term memory network (LSTM)  Yield prediction
基金项目:国家重点研发计划项目(政府间重点专项)(2021YFE104400)
作者单位
姜 宇,马廷淮 (1.新疆大学软件学院新疆乌鲁木齐830091
2.南京信息工程大学软件学院江苏南京210044) 
摘要点击次数: 351
全文下载次数: 237
中文摘要:
      为探讨利用时空建模的深度学习方法提高大区域冬小麦产量预测精度的可行性,从县级冬小麦产量预测角度出发,使用卷积神经网络(convolutional neural networks, CNN)从气候和土壤数据中提取与作物产量密切相关的特征数据,利用注意力机制(attention mechanism)捕捉特征数据之间的相互依赖性,最后将重新加权的特征与长短期记忆网络(long short-term memory network, LSTM)从年产量中捕获到的时间依赖性结合来预测县级冬小麦产量。结果表明,注意力机制模块能够有效地考虑到从CNN中提取的特征之间的相对重要性;模型 RMSE为686.82 kg·hm-2,相较于支持向量机(SVR)、深度全连接(DFNN)和随机森林(RF)模型分别降低了43%、30%和67%,且R2在0.755以上,MAPE低于14.11%,预测精度均优于传统方法。这说明将注意力机制、CNN和LSTM结合建立的预测模型具有良好的泛化能力和空间平稳性,可用于大区域冬小麦产量预测。
英文摘要:
      Utilizing deep learning methods for spatiotemporal modeling can effectively enhance the accuracy of large-scale winter wheat yield predictions. In this study, focusing on winter wheat yield prediction at the county-level, we proposed a county-level model (CNN-LSTM-Attention) that integrates attention mechanisms, convolutional neural networks (CNN), and long short-term memory networks (LSTM). The model emploied a CNN to extract features closely related to crop yield from climatd and soil data, utilized attention mechanisms to capture interdependencies among the extracted features, and combined the reweighted features with the temporal dependencies captured by the LSTM network to predict county-level winter wheat yield. The results indicated that the attention mechanism module effectively could take the relative importance of features extracted from CNN into consideration. The model achieved an RMSE of 686.82 kg·hm-2, reducing by 43%, 30%, and 67% compared to support vector machines (SVR), deep fully connected neural networks (DFNN), and random forest (RF) models, respectively. Additionally, R2 was above 0.755, and MAPE was below 14.11%, demonstrating superior performance compared to traditional methods. The model exhibited robust generalization capabilities and spatial stability.
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第27188975位访问者
版权所有麦类作物学报编辑部
京ICP备09084417号
技术支持: 本系统由北京勤云科技发展有限公司设计