敬告作者朋友
最近我们发现,有一些假冒本刊在线投稿系统的网站,采用与《麦类作物学报》相似的网页、网址和邮箱发送征稿通知以及收取审稿费、版面费的信息,以骗取钱财。详细情况见【通知公告】栏的“再次提醒作者朋友:谨防上当受骗!!!”

关闭
樊泽华,郭建彪,孙清博,刘翠平,张士宇,张潇斌,熊淑萍,马新明,冯 晔.基于特征波段选择的冬小麦叶面积指数高光谱遥感估测模型研究[J].麦类作物学报,2024,(9):1206
基于特征波段选择的冬小麦叶面积指数高光谱遥感估测模型研究
Research on Hyperspectral Remote Sensing Estimation Model of Winter Wheat Leaf Area Index Based on Feature Band Selection
  
DOI:
中文关键词:  冬小麦  高光谱遥感  叶面积指数  特征波段选择  估测模型
英文关键词:Winter wheat  Hyperspectral remote sensing  Leaf area index  Feature band selection  Estimation model
基金项目:河南省重大科技专项项目(221100110700)
作者单位
樊泽华,郭建彪,孙清博,刘翠平,张士宇,张潇斌,熊淑萍,马新明,冯 晔 (1.河南农业大学农学院河南郑州 4500022.河南科技学院农学院河南新乡 4530033.河南省农业技术推广总站河南郑州 450002) 
摘要点击次数: 442
全文下载次数: 279
中文摘要:
      为提高冬小麦叶面积指数(LAI)的遥感估测精度,以实现其无损快速测定目标,在田块尺度设置多年定点不同冬小麦品种氮梯度试验,测定其不同生育时期冠层高光谱数据和LAI,通过原始冠层光谱数据与一阶导数预处理(first-derivative,FD)组合竞争自适应重加权采样(competitive adaptive reweighted sampling,CARS)、无信息变量消除(uninformative variable elimination,UVE)和随机蛙跳(random frog,RF)三种特征波段选择方法进行偏最小二乘回归(partial least squares regression,PLSR)高光谱估测模型构建。结果表明,一阶导数预处理在简化波段数量和提升模型精度上具有较好作用。经过与全波段数据及六种组合内部建模预测精度对比,RF在简化波段方面效果最好,FD-RF组合筛选波段数量为6个,建模的R2和RMSE分别达到0.850和0.730,预测的R2和RMSE分别为0.704和1.005;FD-CARS组合达到了最佳建模精度,R2和RMSE分别为0.876和0.641;FD-UVE组合达到了最佳预测精度,R2和RMSE分别为0.755和0.672。这说明基于特征波段选择可以进行冬小麦叶面积指数高光谱遥感模型建立与有效估测。
英文摘要:
      In order to improve the remote sensing estimation accuracy of the leaf area index (LAI) of winter wheat and achieve its non-destructive and rapid measurement goal, nitrogen gradient experiments were conducted on different winter wheat varieties at field scale for many years, and canopy hyperspectral data and LAI were measured at different growth stages. The partial least squares regression (PLSR) hyperspectral estimation model was constructed by competing with the original canopy spectral data and first-derivative (FD) preprocessing methods of competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE) and random frog (RF). The results showed that the first-derivative preprocessing had an optimal performance in simplifying the number of bands and improving the accuracy of the model. Compared with the prediction accuracy of the full-band data and the six combinations, RF had the strongest performance in terms of simplified bands among which the number of FD-RF combination screening bands was six; the modeled R2 and RMSE reached 0.850 and 0.730, respectively, and the predicted R2 and RMSE were 0.704 and 1.005, respectively. Moreover, the FD-CARS combination achieved the best modeling accuracy, with R2 and RMSE reaching 0.876 and 0.641, respectively. The FD-UVE combination achieved the best prediction accuracy, with R2 and RMSE reaching 0.755 and 0.672, respectively. It suggested that the hyperspectral remote sensing model of winter wheat leaf area index could be established and estimated effectively based on the selection of characteristic bands.
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第27188975位访问者
版权所有麦类作物学报编辑部
京ICP备09084417号
技术支持: 本系统由北京勤云科技发展有限公司设计