敬告作者朋友
最近我们发现,有一些假冒本刊在线投稿系统的网站,采用与《麦类作物学报》相似的网页、网址和邮箱发送征稿通知以及收取审稿费、版面费的信息,以骗取钱财。详细情况见【通知公告】栏的“再次提醒作者朋友:谨防上当受骗!!!”

关闭
谭昌伟,杨 昕,罗 明,马 昌,严 翔,周 健,杜 颖,王雅楠.冬小麦返青期主要生长指标的HJ-1A/1B遥感影像监测[J].麦类作物学报,2015,35(9):1298
冬小麦返青期主要生长指标的HJ-1A/1B遥感影像监测
Using HJ-1A/1B Remote Sensing Images to Monitor Major Growth Indices at Turning Green Stage in Winter Wheat
  
DOI:10.7606/j.issn.1009-1041.2015.09.18
中文关键词:  遥感  冬小麦  HJ-1A/1B  主要生长指标  监测模型
英文关键词:Remote sensing  Winter wheat  HJ-1A/1B images  Major growth indices  Monitoring models
基金项目:国家自然科学基金项目(41271415);江苏高校优势学科建设工程资助项目(PAPD)
作者单位
谭昌伟,杨 昕,罗 明,马 昌,严 翔,周 健,杜 颖,王雅楠 (扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心江苏扬州 225009) 
摘要点击次数: 1599
全文下载次数: 1087
中文摘要:
      为进一步深化作物长势遥感监测机理与方法,给大田管理及时提供信息与技术,结合2011-2013年定点观测试验,以HJ-1A/1B数据为遥感影像源,研究了返青期冬小麦主要生长指标、籽粒品质参数和产量间及其与遥感变量间的定量关系,分别构建及评价基于HJ-1A/1B影像遥感变量的返青期叶面积指数、生物量、SPAD值和叶片含氮量监测模型。结果表明,返青期,归一化植被指数(NDVI)、比值植被指数(RVI)、蓝光波段反射率(B1)和RVI可分别作为监测冬小麦叶面积指数、生物量、SPAD和叶片含氮量的敏感遥感变量,所构建的遥感监测模型可靠且精度较高,模型的决定系数(R2)分别为0.62、0.56、0.46和0.58,均方根误差(RMSE)分别为0.42、452.3 kg·hm-2、4.39和0.54%。同时,对冬小麦不同等级主要生长指标进行遥感监测并制图,量化表达了主要生长指标区域空间分布。
英文摘要:
      The purpose of this research was to deepen the mechanism and methods of remote sensing monitoring on crop growth status,and to provide information and technology for farm management. Based on experimental data obtained from 2011 to 2013 in the fixed-point observation experiment,and using HJ-1A/1B satellite images,the quantitative correlations among major growth parameters of winter wheat at turning green stage and the grain quality parameters,field,and remote sensing variables were analyzed. Models for monitoring the leaf area index,biomass,SPAD value,and leaf nitrogen content of winter wheat at turning green stage using remote sensing variables extracted from the HJ-1A/1B images were constructed and assessed,respectively. The results indicated: It is possible to invert leaf area index,biomass,SPAD value,and leaf nitrogen content of winter wheat at turning green stage by remote sensing variables,such as normalized difference vegetation index (NDVI),ratio vegetation index (RVI),spectral reflectance at blue band (B1),and ratio vegetation index (RVI),respectively. The remote sensing monitoring models of the leaf area index,biomass,SPAD value,and leaf nitrogen content of winter wheat were credible,with determination coefficient (R2) of 0.62,0.56,0.46 and 0.58,respectively,and with root mean square error (RMSE) of 0.42,452.3 kg·hm-2,4.39 and 0.54%,respectively. According to the above results,the spatial distribution of the growth parameters of winter wheat could be implemented with agricultural thematic maps of monitoring the major growth indices at different grades with remote sensing method,thus achieved quantitative expression of regional spatial distribution of the major growth indices.
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第27186374位访问者
版权所有麦类作物学报编辑部
京ICP备09084417号
技术支持: 本系统由北京勤云科技发展有限公司设计